Different
communication technologies are being used for the transmission of
information from one end to another depending on the feasibility and
needs. Some include Ethernet cables, fiber optics, wireless transmission,
satellite transmission, etc. A vast amount of information travels
through the entire earth every day and it creates an essential need for a
transmission medium that is not only fast but economically reasonable
as well. One of the technologies that fit in the above stated criteria
is PLCC.
PLCC, Power Line Carrier Communication,
is an approach to utilize the existing power lines for the transmission
of information. In today’s world every house and building has properly
installed electricity lines. By
using the existing AC power lines as a medium to transfer the
information, it becomes easy to connect the houses with a high speed
network access point without installing new wirings.
This
technology has been in wide use since 1950 and was mainly used by the
grid stations to transmit information at high speed. Now a days this
technology is finding wide use in building/home automation as it avoids the need of extra wiring. The data collected from different sensors
is transmitted on these power lines thereby also reducing the
maintenance cost of the additional wiring. In some countries this
technology is also used to provide Internet connection.
History
The
idea of using an existing medium to send the communication signals is
as old as the telegraph itself. But it had not been possible until the
recent decades. The first significant step in the field was when two
patents were issued to American Telephone and Telegraph Company in the
name of 'Carrier Transmission over Power Circuits' in 1920. After four
years later in 1924 two other patents were filed for the systems
transmitting and receiving communication signals over three phase power
lines.
Harsh
characteristics of the power cables were the key problem in further
development. Researchers were involved to overcome the unpredictable
characteristics of the power lines. Since the early 1980, spread
spectrum power line communication was the main focus of the research.
This technology is now developed far better than that initial
improvement and is promising a reliable utilization in home automation
and security systems.
Applications of PLCC
PLCC
technology can be deployed into different types of applications in
order to provide economic networking solutions. Hence merging with other
technologies it proves useful in different areas. These are few key
areas where PLC communications are utilized:
a. Transmission & Distribution Network: PLCC was first adopted in the electrical transmission and distribution system to transmit information at a fast rate.
b. Home control and Automation: PLCC
technology is used in home control and automation. This technology can
reduce the resources as well as efforts for activities like power
management, energy conservation, etc.
c. Entertainment: PLCC is used to distribute the multimedia content throughout the home.
d. Telecommunication:
Data transmission for different types of communications like telephonic
communication, audio, video communication can be made with the use of
PLCC technology.
e. Security Systems: In monitoring houses or businesses through surveillance cameras, PLCC technology is far useful.
f. Automatic Meter Reading – Automatic Meter reading applications use the PLCC technology to send the data from home meters to Host Central Station.
Power Line Communications
The smart grid implements two-way communication channels over existing power distribution networks. Modern networks might be comprised of a variety of new alternative energy sources. These sources include solar and wind power as well as new types of electric appliances, such as smart appliances and electric vehicles. In many parts of the world, narrowband power line communications (PLC) technology has proven to be a robust and cost-optimized solution in large deployments of smart meters.Atmel® offers PLC solutions designed specifically for narrowband communications using the low-voltage electric grid. Drawing on our deep expertise in PLC modem technology and extensive collaboration with utilities and metering OEMs, we’ve created solutions offering an unprecedented level of integration and performance. Our solutions support various modulation schemes including G3-PLC and PRIME (PoweRline Intelligent Metering Evolution) Thanks to the communications software provided by our solution, the management of PLC networks turns into a transparent process. Users can focus on top-level applications and access the Atmel® PLC software stack via user-friendly application programming interfaces (APIs).
Key Features
- Best-in-class sensitivity and high-temperature stability.
- Improved analog front end (AFE) providing outstanding efficiency.
- Price-competitive, high-performance solutions.
- Free software stacks for PLC
Power Line Communication (PLC) is a communication technology that enables sending data over existing power cables. This means that, with just power cables running to an electronic device (for example) one can both power it up and at the same time control/retrieve data from it in a half-duplex manner.
PLC Market: Overview
Segments
For the purpose of understanding, PLC can be broadly viewed as:
1. Narrowband PLC
2. Broadband PLC
Narrowband PLC works at lower frequencies (3-500 kHz), lower data rates (up to 100s of kbps), and has longer range (up to several kilometers), which can be extended using repeaters. Broadband PLC works at higher frequencies (1.8-250 MHz), high data rates (up to 100s of Mbps) and is used in shorter-range applications.
Recently, narrowband Power Line Communication has been receiving widespread attention due to its applications in the Smart Grid. Another application that narrowband PLC has been used in is smart energy generation, particularly in micro-inverters for solar panels.
Broadband PLC, in contrast, has mainly found acceptance as a last-mile solution for Internet distribution and home networking. With its high data rates and no additional wiring, broadband PLC is seen as an exciting and effective technology for multimedia distribution within homes. This optimism in the market is reflected by the recent acquisitions of Intellon by Atheros, Coppergate by Sigma, DS2 by Marvell, and Gigle by Broadcom, all in the Home Area Networking (HAN) segment.
There is another way to classify Power Line Communication and that is:
1. PLC over AC lines
2. PLC over DC lines
While most companies are currently geared towards providing AC-PLC solutions, PLC in DC lines also has applications. Two such applications are PLC over the DC-bus in distributed energy generation, and PLC in transportation (electronic controls in airplanes, automobiles and trains). This use reduces wiring complexity, weight, and ultimately cost of communications inside vehicles. However, in this article, we will be dealing mostly with narrowband PLC over AC lines.
Competition
The narrowband PLC market is seeing healthy competition, with a large number of PLC suppliers joining the fray, including:
1. Cypress Semiconductor
2. Echelon
3. ST Microelectronics
4. Yitran
5. Texas Instruments
6. Maxim
7. Semitech Semiconductor
8. Ariane Controls
9. ADD Semiconductor
10. Microchip
Companies in the broadband PLC segment include:
1. Atheros
2. Sigma
3. Marvell
4. Broadcom
5. Lantiq
6. Maxim
7. Plugtek
PLC Technology: How does it work?
PLC is like any other communication technology whereby a sender modulates the data to be sent, injects it onto medium, and the receiver de-modulates the data to read it. The major difference is that PLC does not need extra cabling, it re-uses existing wiring. Considering the pervasiveness of power lines, this means with PLC, virtually all line- powered devices can be controlled or monitored!
When discussing communication technology, it is often useful to refer to the 7-layer OSI model. Some PLC chips can implement only the Physical Layer of the OSI model, while others integrate all seven layers. One could use a Digital Signal Processor (DSP) with a pure software realization of the MAC and an external PHY circuit, or an optimized System-on-Chip (SoC) solution, which includes the complete PLC – MAC and PHY. The Cypress CY8CPLCXX series is an example of the latter, with a ready-to-use Physical and Network layer, and a user-programmable application layer. Before moving on to the applications of PLC, let’s first understand the various aspects of the Physical layer by viewing it as three segments on the basis of data rate.
Modulation Schemes
A variety of modulation schemes can be used in PLC. Some of these are Orthogonal Frequency Division Multiplexing (OFDM), Binary Phase Shift Keying (BPSK), Frequency Shift Keying (FSK), Spread-FSK (S-FSK) and proprietary schemes too (for example Differential Code Shift Keying (DCSK) from Yitran). In the table below, BPSK, FSK, SFSK and OFDM are compared on the basis of two important criteria – bandwidth efficiency and complexity (cost).
OFDM in particular offers high data rates, but requires computational horsepower to churn out Fast Fourier Transforms (FFT) and Inverse-FFT (IFFT), as required by the scheme. On the other hand, BPSK, FSK are robust and simple but offer lower data rates. The current trend is to move towards OFDM with PSK modulation (G3 and probably P1901.2). Such heavy computation will require DSP capability, whereas FSK, PSK and SFSK can be accomplished by a microcontroller.
Standards
Various standards have been developed in order to ensure reliable communications and inter-operability, especially for the smart grid and home networking. Examples of such standards are:
These, along with the organizations that govern them like CENELEC, FCC, ARIB, Homeplug Power Alliance specify ranges for operation of PLC. If a worldwide standard for PLC were to be established, this would have a positive impact on adoption of PLC. So far, the G3-PLC standard is touted as the most robust scheme available, and the IEEE 1901.2 working group is committed to developing a universally acceptable standard.
Frequencies
Different regions of the world have different frequency bands allocated to narrowband PLC. The table below summarizes the different frequencies available for narrowband PLC communication in the respective region.
Where:
CENELEC - European Committee for Electrotechnical Standardization.
ARIB – Association of Radio Industries & Businesses
EPRI – Electric Power Research Institute
FCC – Federal Communications Commission
APPLICATIONS
Earlier, we saw that PLC is widely used in the Smart Grid and in micro-inverters. As the market gets familiar with this technology, PLC should see wider adoption in other applications like lighting (e.g. traffic light control, LED dimming), industrial (e.g. UPS communicating to a network device, irrigation control), machine-to-machine (e.g. vending machines, a hotel’s reception-to-room communication), telemetry (e.g. offshore oil rigs), transport (e.g. Electronics in cars, trains and airplanes) and indeed, applications of PLC are only limited by one’s creativity. In this article, we will find out a little more about PLC in energy generation and conservation markets.
No comments:
Post a Comment